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Abstract

We introduce ProtMAE, a domain-specific masked au-
toencoder for protein distance map reconstruction, de-
signed to tackle the unique biological challenges of protein
structure prediction. Our approach achieves high recon-
struction quality with a Structural Similarity Index Measure
(SSIM) of 0.847, significantly outperforming standard Vi-
sion Transformers (SSIM: 0.009), while maintaining com-
putational efficiency with inference times of 0.05 ms per
sample. By incorporating distance-aware positional em-
beddings, hybrid attention-convolution blocks, and protein-
specific loss functions, we demonstrate that domain knowl-
edge integration is crucial for effective self-supervised
learning in such specialized applications. We validate
our learned representations through two challenging down-
stream tasks: secondary structure classification achieving
78.1% accuracy, and protein contact prediction achieving
71.0% AUC and 0.443 AUPR despite severe class imbal-
ance. Our results demonstrate that self-supervised pretrain-
ing on protein distance maps learns biologically meaning-
ful features that transfer effectively to structure prediction
tasks, opening new avenues for computational protein anal-
VSis.

1. Introduction

Protein structure prediction is essential for drug design
and understanding disease mechanisms. While models like
AlphaFold have predicted full protein structures with re-
markable accuracy, little is known about how small frag-
ments of amino acid fold. This local folding behavior is cru-
cial for understanding novel sequences, mutations, and dis-
ordered regions, which are often misrepresented or poorly
resolved by full protein models. These local structures have

direct implications for drug discovery, as many binding sites
involve flexible loops and disordered regions that challenge
full protein modeling approaches.

We approach this problem through a computer vision
lens, treating distance maps of protein fragments as images.
Distance maps encode pairwise distances between amino
acid residues in a protein’s 3D structure, offering a com-
pact yet information rich representation that captures both
local secondary structure and aspects of global fold topol-
ogy. Unlike natural images, these maps are symmetric ma-
trices with structured diagonal patterns reflecting sequential
proximity, and sparse off-diagonal elements capturing key
long range interactions that stabilize protein conformation.

Our goal is to develop self-supervised models that can
reconstruct complete distance maps from partially masked
inputs, thereby learning the spatial patterns underlying pro-
tein folding. The input to our method is a 64 x 64 grayscale
image representing a normalized pairwise distance map
of a 40-64 residue protein fragment, with each pixel en-
coding the inter-residue distance (normalized to the range
[0,1], corresponding to 0-20 A). We designed a specialized
Masked Autoencoder (MAE) architecture, ProtMAE, and
compared it against three baseline models: a standard CNN,
a masked CNN variant, and a Vision Transformer (ViT).

ProtMAE is designed specifically for protein distance
maps, introducing several key innovations: (1) distance
aware positional embeddings that encode diagonal and
structural distance patterns critical for protein folding; (2)
hybrid attention-convolution blocks that capture both local
continuity and global dependencies; and (3) protein spe-
cific loss functions that enforce symmetry and encourage
smooth, biologically plausible reconstructions.

To evaluate the effectiveness of the learned represen-
tations, we transfer them to two downstream tasks. For
secondary structure classification, we predict one of three
classes (alpha helix, beta sheet, or coil) for each fragment.



For contact prediction, we perform binary classification to
determine whether residue pairs are within 8 A. By fram-
ing protein folding as a computer vision problem with do-
main specific architectures and loss functions, we designed
ProtMAE to learn meaningful structural representations and
protein folding mechanisms.

2. Related Works

We organize existing methodologies into four categories,
examining their relationship to ProtMAE and identifying
gaps our approach addresses.

2.1. End-to-End 3D Structure Predictors

AlphaFold2 pioneered the Evoformer architecture and
remains the gold standard for whole-protein modelling,
reaching a median C, RMSD of 0.96 A on CASP14 tar-
gets [10]. Its reliance on deep evolutionary alignments and
heavy supervision, however, leaves flexible or disordered
segments poorly resolved an Achilles’ heel that ProtMAE
tackles with a fragment-centric view.

RoseTTAFold extends the idea with a three-track net-
work that jointly reasons over sequence, distances and co-
ordinates [2]], while ESMFold shows that large protein lan-
guage models can approach AlphaFold-level accuracy using
sequence alone [[13]]. Although state-of-the-art at the protein
level, these systems demand massive compute and exhibit
uneven local accuracy, motivating a lighter self-supervised
alternative.

2.2. Distance Map and Contact Prediction Methods

Supervised predictors that output inter-residue distances
or contacts have converged near a 71 % AUC ceiling.
RaptorX-Contact first applied very deep, dilated CNNs to
this task [15]; TripletRes lifted precision to 71.6 % with
triplet co-evolution features and attention [L1]. ProSPr
adopted 64 x 64 crops similar to ours and reached ~70 %
AUC using transformer-inspired attention [4]. All three
hinge on multiple-sequence alignments (MSAs); by learn-
ing directly from geometry, ProtMAE circumvents the
MSA bottleneck and is therefore better suited to orphan or
de-novo sequences.

2.3. Self-Supervised Masked Representation Learn-
ing

The original MAE work showed that randomly masking
75 % of image patches yields powerful vision representa-
tions [9]]. Off-the-shelf MAEs, however, collapse on protein
distance maps (SSIM 0.009 in our tests) because they lack
biological biases. Sequence-level models—ProtTrans,
ESM-2 and ProteinBERT—mask amino-acid tokens in-
stead and excel at language-like tasks [8l |12} 5]. GearNet
moved self-supervision into geometric space but requires

full 3D coordinates [[16]. None of these methods learns di-
rectly from 2D distance maps; ProtMAE fills that gap.

2.4. Hybrid Vision Transformer Architectures

We were inspired by two transformer papers: Vision
Transformer introduced patch tokenization, which shaped
our distance map inputs [7]. Swin Transformer proposed
hierarchical attention, informing our progressive masking
strategy [14]].

CoAtNet provides theoretical foundation for ProtMAE’s
hybrid blocks by demonstrating that the combination of
CNN spatial locality with Transformer global modeling
achieves superior performance [6]. Guided by this, we cre-
ated a hybrid architecture that combines local and global
pattern recognition.

2.5. ProtMAE'’s Position and Key Innovations

ProtMAE bridges critical gaps dicussed above by (1) fo-
cusing on local fragment patterns crucial for disordered re-
gions that global models miss; (2) using self-supervised pre-
training without evolutionary data requirements; (3) explic-
itly capturing spatial geometry through distance maps.

Key innovations include distance-aware positional em-
beddings that encode diagonal patterns crucial for pro-
tein structure, hybrid attention-convolution blocks follow-
ing CoAtNet principles, and protein specific loss functions
that enforce biological constraints.

3. Methods

Our ProtMAE architecture consists of multiple special-
ized components to address the unique challenges of protein
distance map analysis. We present the mathematical formu-
lations and design rationale for each component below.

3.1. Protein Distance Map Embedding

Unlike standard patch embeddings that treat all image
regions equally, protein distance maps exhibit specific pat-
terns that require specialized processing. Given an input
distance map D € R1*64x64 " we employ a three-stage
convolutional embedding that progressively increases chan-
nels (64— 128—256) using 3x3 kernels followed by a 4x4
strided convolution to generate patches. This design enables
the model to build hierarchical features that capture both
fine-grained distance variations and higher-level structural
abstractions.

We apply batch normalization and GELU activations af-
ter each convolutional layer to stabilize training and main-
tain effective gradient flow. The final embedding is re-
shaped from spatial dimensions into a sequence format for
transformer processing, resulting in 256 patches of dimen-
sion 256.



3.2. Distance-Aware Positional Encoding

Standard sinusoidal positional encodings fail to capture
the structural significance of positions in distance maps. We
design positional embeddings that explicitly encode three
critical aspects: absolute position, diagonal distance (rep-
resenting sequence separation) and the symmetric nature of
the matrix. For each patch at position (4, j) in the 16 x 16
patch grid, we compute:

Di 5 = Pabs + Ddiag + Psym

The absolute position component uses standard sinu-
soidal encoding of the coordinates. The diagonal distance
component represents how far each patch is from the main
diagonal, which is important because the diagonal distance
corresponds to the sequence separation between residues.
The symmetry component ensures that patches along the
diagonal receive special encoding, and that patches equidis-
tant from the diagonal share similar encodings, enabling
the model to leverage the symmetry in distance maps ef-
fectively. By embedding these protein specific spatial rela-
tionships directly into the positional encoding, we facilitate
more efficient learning of structural patterns.

3.3. Hybrid Transformer Blocks

Pure attention mechanisms excel at capturing global de-
pendencies but lack the inductive biases helpful for local
structure modeling. We introduce hybrid blocks that al-
ternate between standard Transformer layers and combined
attention-convolution blocks.

The standard Transformer block is defined as:

2" = 2z + MHSA(LN(z))
Zow = 2" + MLP(LN(z2'))

where MHSA denotes multi-head self-attention, LN de-
notes layer normalization, and MLP is a two-layer feedfor-
ward network with GELU activation and an expansion ratio
of 4.

The hybrid block additionally incorporates spatial con-
volutions. However, during masked pretraining, applying
convolutions to incomplete sequences can introduce arti-
facts. Thus, the convolutional pathway is disabled during
pretraining and only activated for downstream tasks where
the full sequence is visible.

3.4. Multi-Scale Decoder Architecture

To reconstruct both fine grained distances and global
structure, we employ a multi-scale decoder with separate
prediction heads at different resolutions. Given the encoded
representation from the transformer, we first project it into a
lower dimensional space (256—128 dimensions) to reduce

computational cost while maintaining representational ca-
pacity.

For masked patches, we introduce a learnable mask to-
ken that is inserted at the positions of missing patches us-
ing restore indices. After adding decoder specific positional
embeddings and applying transformer blocks, we generate
predictions at multiple scales.

The decoder produces two outputs: a finegrained predic-
tion at full 64x64 resolution and a coarse prediction initially
at 32x32 resolution that is upsampled using bilinear inter-
polation. The final output applies a sigmoid activation to
ensure distance values remain in the valid [0, 1] range.

This multi-scale approach allows the model to capture
both local distance variations and global structural patterns,
leading to more accurate and structurally coherent recon-
structions.

3.5. Protein Specific Loss Functions

Distance maps have unique structural properties not cap-
tured by standard reconstruction losses. We use a composite
loss with three components:

1. Reconstruction Loss (MSE):

1
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where M is the set of masked positions.
2. Smoothness Loss:

1
Limoots = Frv7 Z (1Pi+1,5 — Pijgl + [Pij1 — Pijl)
2,]
3. Symmetry Loss:
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The total loss combines these with empirical weights:

Liotal = Lrecon + 0.1 Lgmoom + 0.1 - Esym

We chose the weights to prioritize accurate reconstruc-
tion while ensuring the model learns smooth, symmetric
outputs that are representative of real protein structures.

3.6. Training Strategy

We use progressive masking, starting at 50% and linearly
increasing to 75% over the first 40% of training epochs.
This schedule allows the model to learn easier tasks early
on and gradually handle more challenging reconstructions.
Masking follows a uniform random patch distribution.

We optimize using AdamW with weight decay of 1075,
which improves generalization over standard Adam. The



learning rate follows a cosine annealing schedule with lin-
ear warmup: it starts small, increases linearly to the max-
imum value during the warmup period, then gradually de-
creases following a cosine curve. This approach helps sta-
bilize training in the early stages while allowing for fine-
tuning in later epochs.

3.7. Downstream Task Adaptations

3.7.1 Secondary Structure Prediction

We adapt ProtMAE for secondary structure prediction by
adding a classification head on top of the encoder. For this
task, we utilize DSSP annotated protein structures from the
Protein Data Bank (PDB). The downstream model takes a
masked distance map X € R64X64 a5 input and predicts
secondary structure labels Y € {H, E,C}L, where H, F,
and C' denote a-helix, S-sheet, and coil structures respec-
tively, and L is the sequence length.

The architecture consists of the pre-trained ProtMAE en-
coder followed by a global average pooling layer to reduce
spatial dimensions, two fully connected layers with ReLU
activations, and a final softmax classification layer for three-
class prediction.

The loss function is a combination of cross-entropy loss
for classification and an L2 regularization term:

L:total = CCE + )\Ereg

where

Lop == D wilog(n).  Lueg = W

3

and A is a hyperparameter controlling regularization
strength.

3.7.2 Contact Map Prediction

To predict residue-residue contacts, we extract features
from encoder layers 2, 4, 6, and 8 to capture a hierarchy
of representations, from local atomic details to more global
folding patterns. Each of these feature maps is passed
through a separate linear layer, then concatenated to form a
unified representation that preserves local and global struc-
tural information.

Our contact prediction head uses a dual branch design:
one branch uses transposed convolutions to reconstruct the
full 2D contact map, while the other predicts contact prob-
abilities patch by patch. The outputs from both branches
are combined using learned weights and trained with bi-
nary cross-entropy loss. This setup lets us make the most of
our pretrained encoder, while adding only lightweight task-
specific layers for efficient transfer to contact prediction.

3.8. Masked CNN Baseline Architecture

We also implement an optimized CNN tailored for pro-
tein distance map reconstruction. The architecture follows
a U-Net design with an encoder-decoder structure and skip
connections. The encoder consists of four blocks, each con-
taining two convolutional layers (Conv — BatchNorm —
ReLU), followed by max pooling. The channel progression
is [32, 64,128, 256], culminating in a bottleneck with 512
channels.

A unique feature we added is channel attention in the
bottleneck using global average pooling and learnable chan-
nel weights. This enhances the model’s ability to capture
long-range dependencies by reweighting feature channels
based on global context.

The decoder mirrors the encoder, using transposed con-
volutions for upsampling and concatenated skip connec-
tions from the corresponding encoder layers at each level.

For the masked CNN variant, we apply structured mask-
ing during training by randomly removing square patches
of size 4-12. This simulates realistic missing regions in
protein structure data, encouraging the model to learn con-
textual reconstruction strategies.

The loss function combines mean squared error (MSE)
for pixel-wise reconstruction, structural similarity index
(SSIM) to preserve overall structural fidelity, and a sym-
metry regularization term that penalizes deviations from the
natural symmetry of protein distance maps.

4. Dataset and Features

Our primary dataset consists of 822,122 protein frag-
ment distance maps we extracted from structures in the Pro-
tein Data Bank [3]]. Each map is a 64x64 matrix depicting
pairwise Cf3 distances between residues within a 40-residue
window. A few representative examples are shown in (Fig-
ure [T} This resolution captures structural patterns across
fragments up to 64 residues in length and distances up to 20
A, balancing local detail with computational efficiency.

Sample 1 - PDB ID: 18829 O'Sample 2-PDBID: 07964 Sample 3 - PDB ID: 06797
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Figure 1. Examples of 64x64 distance maps extracted from PDB
fragments.

To convert the raw PDB structures into normalized dis-
tance maps, we first extracted the 3D coordinates for each
residue’s representative atom. For missing residues and
atoms with multiple conformations, we selected the high-
est occupancy positions. We then computed the Euclidean



distance matrix, where each element d;; = |[|r; — rj|2
represents the distance between residues ¢ and 5. To en-
sure consistent input ranges suitable for neural network pro-
cessing, we normalized the distances as follows: Dyorm =
min (?O’f'g , 1.0). We split our 822,122 samples into training,
validation, and test sets with an 80-10-10 ratio: 657,697
training samples, 82,212 validation samples, and 82,213
test samples.

For our secondary structure prediction task, we used the
CASP12 dataset splits from the ProteinNet benchmark of
the PDB [[1]]. We applied strict filtering to the initial 50,914
records to ensure compatibility with ProtMAE. We retained
only fragments with complete coordinate information, valid
DSSP annotations, and sequence lengths < 64 residues to
match our encoder’s input size. This resulted in a high qual-
ity subset of 3,302 protein fragments (6.5% retention). (Fig-
ure [2) shows an example of the original DSSP annotation
for one of these fragments.

ID: 200L_1_A
Sequence:
MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAK...

DSSP:
LLHHHHHHHHHLLEEEEEELTTSLEEEETTEEEESSSLHHHH...
Figure 2. Example sequence and DSSP annotation (truncated) for
a fragment.

Since our goal was to predict secondary structure, we
mapped 8 states of DSSP labels into 3 classes we were ul-
timately interested in: alpha helices, beta sheets, and coils.
For each protein fragment, we converted its DSSP string
which consists of one character per residue into a sequence
of numerical labels (0 for helix, 1 for sheet, 2 for coil).
These label sequences were our training targets. Our model
was trained to predict the secondary structure label for each
individual amino acid residue within the 64-residue frag-
ment.

For the contact map prediction task, we used a compu-
tationally manageable subset of 33,387 distance maps, split
into 26,709 for training, 3,339 for validation, and 3,339 for
testing. We derived contact map labels using the literature
standard 8 A threshold for residue-residue interactions in
protein structures. To focus on long range interactions, we
excluded residue pairs separated by fewer than 12 positions
in the sequence since they do not typically contribute to ter-
tiary structure. The resulting contact maps are sparse, with
only 2-5% of residue pairs in contact.

5. Experiments, Results, and Discussion

5.1. Experimental Setup and Hyperparameters

All experiments were conducted on the full 822,122 pro-
tein fragment dataset unless otherwise specified. Hyperpa-
rameters were selected based on validation performance. A

base learning rate of 1 x 10~* was chosen for stable con-
vergence, as lower values were too slow and higher ones led
to instability in separate exploratory runs. A batch size of
256 was used for MAE training in order to balance gradient
stability with GPU memory efficiency on T4 hardware (via
GCP).

A progressive masking schedule (linearly increasing
from 50% to 75%) was used after we observed that start-
ing with high masking ratios hindered early learning. A
warmup period of 2 epochs was added to decrease the
likelihood of early training instability, especially given the
model’s custom encoder-decoder architecture and loss for-
mulation. Weight decay of 0.05 provided effective regular-
ization without overly constraining capacity.

5.2. Reconstruction Performance

Our primary metrics for evaluating reconstruction qual-
ity are Mean Squared Error (MSE) for pixel-level accuracy
and Structural Similarity Index (SSIM) for perceptual qual-
ity. MSE measures the average squared difference between
predicted and ground truth distance values:

n

1 ~
MSE = = D; — D;)?
nZ( )

i=1
where D, and D; are the ground truth and predicted val-
ues. SSIM evaluates structural similarity by comparing lu-
minance, contrast, and structure:

(22 1y + c1)(204y + c2)
(12 + p2 +c1)(02 + 02 + c2)

SSIM(z,y) =

where u, 02, and 0.y Tepresent means, variances, and co-
variance respectively. We additionally report inference time
to assess computational efficiency, a critical consideration
for large scale protein analysis applications.

The results (Figure [3) reveal several critical insights.
First, the standard Vision Transformer performs poorly on
protein distance maps, achieving an SSIM of only 0.009,
indicating failure to capture structural patterns. This high-
lights the importance of domain-specific design: using
generic architectures developed for natural images to cap-
ture properties of protein data results in poor performance.

The Standard CNN achieves excellent reconstruction
quality with the highest SSIM (0.983) and lowest MSE
(0.000). This shows that convolutional architectures with
proper design can effectively capture protein distance map
patterns. However, this performance comes at a computa-
tional cost of 2.81 ms inference time.

The Masked CNN (75%) shows the impact of masking
during training, with slightly reduced SSIM (0.960) com-
pared to the standard version. That said, it maintains rea-
sonable reconstruction quality while achieving 3 x faster in-
ference (0.930ms). This demonstrates that masking-based



pretraining can learn meaningful representations even with
significant information removal.

Our ProtMAE achieves competitive reconstruction qual-
ity (SSIM: 0.847) while being significantly more efficient,
requiring only 0.05ms per sample (making it 56x faster
than the standard CNN and over 1000 x faster than the Vi-
sion Transformer). This efficiency stems from our opti-
mized architecture with fewer parameters and streamlined
processing, combined with the learned representations from
masked pretraining.
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Figure 3. Reconstruction Performance Comparison

5.3. Training Dynamics and Convergence Analysis
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Figure 4. Training history showing (top left) training and valida-
tion loss convergence, (top right) validation MSE decrease, (bot-
tom left) validation SSIM improvement, and (bottom right) learn-
ing rate schedule with warmup and cosine decay.

The training dynamics (Figure[d)) show rapid initial con-
vergence followed by steady improvement across all mod-
els. For ProtMAE, the validation loss closely mirrors train-
ing loss, indicating good generalization with no signs of
overfitting. The SSIM improvement from 0.45 to 0.85 over
10 epochs demonstrates the model’s ability to progressively
capture finer structural details.

The learning rate schedule, with warmup followed by co-
sine decay, contributes to stable training and optimal final
performance. The symmetry loss remains consistently near
zero throughout training, indicating that our model naturally
learns to enforce the fundamental symmetry property of dis-
tance maps without explicit constraint during reconstruc-
tion. This suggests successful internalization of protein-
specific structural properties.

5.4. Qualitative Reconstruction Analysis

Qualitative analysis of reconstructions (Figure 3 reveals
deeper insights into model behavior. The reconstructions
show ProtMAE successfully recovers distance map struc-
ture from only 25% of visible patches. The model cap-
tures both the characteristic diagonal pattern (representing
sequential proximity) and off-diagonal features (secondary
structure elements like loops and turns appearing as bright
yellow regions).

Original Masked Input (75%)

Figure 5. Qualitative reconstruction results from ProtMAE. Each
row shows an example fragment: original distance map, masked
input (75% masking), ProtMAE reconstruction, and correspond-
ing error map. ProtMAE successfully recovers both diagonal and
off-diagonal structural features from sparse input, with low recon-
struction error.

The error maps indicate reconstruction errors remain rel-
atively uniform across distance maps, with mean errors be-
tween 0.0383 and 0.0465. Errors follow a subtle pattern
along the diagonal and at certain structural features, but im-
portantly do not concentrate at patch boundaries—this sug-
gests the model learns smooth transitions between masked



and visible regions. The consistent red coloration in er-
ror maps shows the model slightly underestimates distances
overall rather than exhibiting localized failure. The stan-
dard CNN, masked CNN, and ProtMAE models learned to
enforce symmetry without explicit constraints during recon-
struction, demonstrating internalization of this fundamental
property. The CNN models excel at preserving fine-grained
local patterns, while ProtMAE achieves better global con-
sistency despite challenging masking ratios. This is clear in
how ProtMAE maintains overall distance distribution and
structural features even when reconstructing from sparse
inputs, successfully recovering both local patterns (texture
along the diagonal) and global structure (off-diagonal bright
spots indicating long range contacts).

5.5. Secondary Structure Prediction

Through this downstream task, we evaluated ProtMAE’s
learned representations. We froze the pretrained encoder
and trained a simple classification head to predict secondary
structure classes (alpha helices, beta sheets, and coils). We
observed 78.1% accuracy in predicting secondary structures
which is impressive given that we used no additional in-
formation such as sequence or evolutionary data. This in-
dicates our model was able to learn local folding patterns
directly from geometric information alone.
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Figure 6. Confusion matrix for ProtMAE secondary structure pre-
diction.

However, as we dug deeper into the specific performance
metrics, we saw significant variability across classes: alpha
helix prediction is remarkable (88% precision, 87% recall),
coil prediction is moderate (52% precision, 53% recall),
but beta sheet prediction fails completely (0% recall) (Fig-
ure [6). These results align with the structure of the train-
ing data: The coil class has a lot of structural heterogeneity
since we labeled anything not alpha helix or beta sheet as a
coil. Since they have to catch all non-regular classes, there

is likely a tradeoff in precision. The beta sheet prediction
failing is due to severe class imbalance with only 15 ex-
amples, which is insufficient for the model to learn reliable
patterns (Figure [7). Nevertheless, the strong helix classifi-
cation performance is a high signal that our pretrained fea-
tures capture biologically relevant structure. With improved
balancing strategies or more representative beta sheet data,
we anticipate there would be substantial gains in overall and
class specific performance.

5.6. Contact Prediction

Contact prediction is a challenging downstream task
that evaluates whether our learned representations cap-
ture biologically meaningful structural information. Our
contact prediction model achieves an AUC of 71% and
an AUPR of 0.443, indicating that ProtMAE effectively
encodes the structural relationships necessary to identify
residue-residue contacts.

The AUPR of 0.443 is particularly noteworthy given
the severe class imbalance inherent in contact predic-
tion—typically only 2-5% of residue pairs are in contact.
While the 71% AUC reflects solid discriminative perfor-
mance, the modest AUPR underscores the inherent diffi-
culty of the task, especially under our 64-residue window
constraint, which limits the model’s ability to detect long-
range contacts.

To address this imbalance, we combine focal loss and
Dice loss during training. We also incorporate transformer
layers to capture spatial dependencies and apply contact-
preserving augmentations to maintain structural coherence.
Despite these optimizations, the results reveal fundamental
challenges: the limited sequence window excludes many
functionally relevant long-range contacts, and the 2D dis-
tance map representation may not fully capture the 3D spa-
tial relationships that determine true physical contacts.

These limitations suggest that while ProtMAE learns
meaningful structural features, achieving stronger perfor-
mance on contact prediction may require access to longer
sequence contexts or explicit 3D coordinate information.

6. Conclusion & Future Work

We designed ProtMAE, a masked autoencoder that re-
constructs protein distance maps as a proxy for learning lo-
cal folding patterns. We benchmarked four models: stan-
dard CNN, masked CNN, ImageNet-pretrained ViT, and
ProtMAE and found that ProtMAE achieved competitive re-
construction quality.

Our core contribution is adapting masked autoencod-
ing to this unique task of small fragment folding. Prot-
MAE uses a lightweight architecture with hybrid atten-
tion—convolution blocks to capture both local and long
range folding patterns. We incorporate geometric priors
through distance-aware positional embeddings and protein



specific loss function. These inductive biases enable Prot-
MAE to generalize well across tasks, achieving 78% ac-
curacy in secondary structure prediction and 71% AUC in
contact map prediction. Compared to baselines, ProtMAE
matches or exceeds performance (SSIM: 0.847) while be-
ing 56x faster than CNNs and over 1000x faster than the
baseline ViT, demonstrating its strength as both an accurate
and highly efficient representation learner.

In future work, we aim to explore two adaptations to
ProtMAE. First, we are interested in integrating multimodal
data, specifically sequence and functional information, in
addition to the structural features this project focused on.
Second, while our current approach is purely geometric, it
would be interesting to incorporate evolutionary and bio-
chemical constraints that influence protein folding. Both
of these improvements could enrich the learned representa-
tions and improve generalization across diverse protein re-
lated tasks.

For the downstream tasks, we identified two challenges
from limitations in fragment size and resolution. In the
structure prediction task, we observed that the 64 residue
input cap limited our ability to represent beta sheets, which
often depend on long-range interactions. We likely require
larger input contexts to capture more complex structural ele-
ments. Future work could explore expanding the input size
or incorporating mechanisms to aggregate fragments in a
computationally efficient way. Likewise, for the contact
map task, we used an 8§ A threshold to define residue-residue
contacts to predict tertiary interactions. Future work could
explore adjusting this threshold to better capture a range of
biologically meaningful spatial proximities. Overall, our
findings suggest that distance map reconstruction is a pow-
erful pretext task for learning rich, transferable protein rep-
resentations. ProtMAE is both accurate and efficient, laying
a strong foundation for future advances in structural biology
and protein modeling.

7. Appendix

Class Distribution in Test Set
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Figure 7. Class distribution in the secondary structure test set.

8. Contributions

All three authors contributed equally to this work. EM
prepared the dataset and optimized the models to scale to
the full set of 800,000 protein fragments. EM evaluated
the baseline Vision Transformer (ViT), AA evaluated the
baseline CNN. JB implemented the masked CNN. All three
authors contributed to the development of the ProtMAE
model. The downstream tasks were evenly divided: EM led
the secondary structure prediction, while AA and JB jointly
worked on the contact map prediction. This project was
conducted independently and was not shared with any other
course, did not involve external collaborators, and did not
make use of public code.

Libraries Used

The following software libraries were used in this
project:

* PyTorch (2.3.)

e NumPy (1.26.)

* Matplotlib (3.8.)

* scikit-image (0.23.)
e scikit-learn (1.4.)

* einops (Version 0.8.)
* tqdm (Version 4.66.)

e ProSPr [4]
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